

CSIR-IIP : A Global Leader

Unilube, KSA & DeMenno Kerdoon, USA Paramount Grindly, KSA Gulf Petrochemicals, KSA

Re-refining of Used Lube Oil

- Improving Colour and Colour Stability
- Basic Design Engineering Package (BDEP)

SABIC, UK

- Pure BTX from Straight Run Naphtha
- Revamp of Sulpholane Extraction Unit
- Transfer of CSIR- IIP BTX simulation model

SABIC, KSA

- Signing of Master Research Alliance Agreement (MRAA)
- Benzene to Phenol

ASTON UNIVERSITY, UK

Pyrolysis Technology

- 2. BAUD COMPANY, KSA
- 3. BP, UK
- 4. DeMENNO / KERDOON, USA
- 5. ENVERGENT TECHNOLOGY, USA
- 6. EXXON MOBIL, USA
- 7. FAU FRIEDRICH-ALEXANDER UNIVERSITAT ERLANGEN GERMANY
- 8. FARABI, KSA
- 9. GULF PETROCHEMICALS, KSA
- 10. IMDEA ENERGIA, SPAIN
- 11. MONASH UNIVERSITY, AUSTRALIA
- 12. PATCHAM, UAE
- 13. PRATT & WHITNEY, CANADA
- 14. RTI, USA
- 15. SABIC, UK
- 16. SHELL TECHNOLOGIES
- 17. SINTEF, NORWAY
- 18. SOAT-LTT, GERMANY
- 19. SwRI, USA
- 20. TECH. UNIV. MUNCHEN, GERMANY
- 21. UIUC, USA
- 22. UKIERI, UK
- 23. UNILUBE, KSA
- 24. UNIV. OF ALBERTA, CANADA
- 25. UNIV. OF ILLINOIS, USA 26. UNIV. OF HUDDERSFIELD
- 26. UNIV. OF HUDDERSFIELD, UK 27. UNIV. OF NEW CASTLE, UK
- 28. UOP, USA
- 29. RMIT UNIVERSITY, AUSTRALIA
- 30. MELBORNE UNIVERSITY, AUSTRALIA

Baud Company, KSA

 Processing of Group II Lubricating Base Oil

FARABI, KSA

 Dearomatization of Kerosene

SINTEF, NORWAY

- Sulphur reduction in the naphtha product
- Adsorption technology for ultra low sulphur diesel production
- Adsorption technology for recovery of CO2

Clariant Corporation, USA

Testing of FT Catalyst

Recent Achievements

Simultaneous Production of US Grade Gasoline And High Purity Benzene from FCC Naphtha : CSIR IIP & RIL Technology

Need for this Technology

✤MSAT – II regulations which became active on January 1st, 2011 ("EPA Regulatory Announcement" – EPA420-F-07-017, FEBRUARY 2007), restricts the annual average benzene level in Gasoline sold in U.S, to 0.62 % vol.

Surplus shale / ethane sources resulting in conversion of Naphtha crackers to Gas Crackers. Need to process alternative feedstocks to compensate for decreases in PyGas production.

Salient Features of Technology

- Produces :
 - **Gasoline having: (i) Sulphur < 10ppm (ii) Benzene < 0.3%**
 - ✤ High purity benzene
- First time in the world and first indigenous technology Implemented in RIL, Jamnagar
- Capacity: ~0.7 MMTPA
- Capex: ~300 Crores INR
- Payback Period: Est. 2.5 Years

Accolades

- **CSIR Technology Award for Innovation, 2014**
- US Patent 8722952, May 2014

Plant successfully Commissioned at RIL Jamnagar in May 2016

Production of Paraffin & Microcrystalline Waxes at NRL

Numaligarh Refinery has installed a Wax D-eoiling Unit

with an investment of Rs.676 crore using CSIR-IIP

Technology.

Production Capacity

- > 45,000/50,000 TPA Paraffin Wax
- > 5000 TPA Microcrystalline Wax
- •Basic Design data generated at CSIR-IIP

•PEDP by EIL with IIP's Technical Support

Honourable Prime Minister Shri Narendra Modi dedicated the Wax Plant at Numaligarh Refinery Limited (NRL) to the nation on 5th February, 2016

View of Wax Slabbing Unit

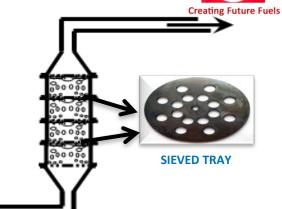
Wax production unit , NRL, Assam

Dewaxing-Deoiling Pilot Plant at CSIR-IIP

प्रापेसं Creating Future Fuels

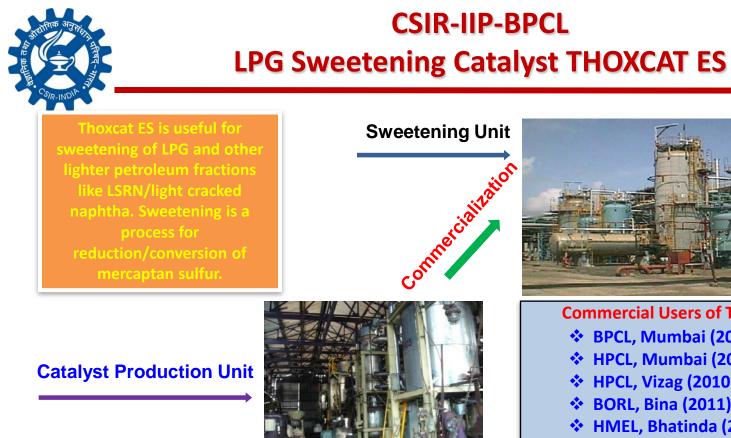
- Increase in NRL profitability by Rs. 77.0 crores/annum equivalent to enhanced gross refinery margins by US \$ 0.53 per barrel.
- Significant savings on fixed capital investment and energy consumption compared to foreign technologies
- Wax production at NRL cut down wax import by 50% and saved foreign exchange of ~ US \$ 38 million.
- NRL has started export of paraffin wax to about 20 countries such as Nepal, Kenya, Bangladesh, Mexico, Nicaragua, Thailand and China
- Societal Benefits : Wax plant has generated direct jobs (125 persons) and created a new wave of wax entrepreneurs and cottage industries using wax in the North-East

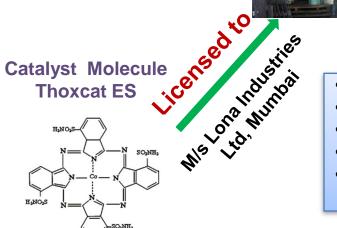
Production of paraffin wax at NRL is a great success under 'Make in India'


CONVENTIONAL SOAKER

Advanced Soaker Technology

Benefits


- More distillates
- > Improved fuel oil stability
- > Better temperature profile
- Enhanced run length


Commercialisation and Economic Benefits

SOAKER WITH INTERNALS

	HPCL, Vizag	IOCL, Mathura	IOCL, Haldia	
Technology Transfer	August, 2011	January, 2013	September, 2014	
Installation of internals	September, 2012	October, 2013	February, 2016	
Commissioning	October, 2012	November, 2013	March, 2016	
Status	Running smoothly	Running smoothly	Running smoothly	
Economic Benefit (Rs. Cr/annum)	9.3	8.5	6.2	
Payback Period (months)	<3	<4	<5	

Commercial Users of Thoxcat ES: BPCL, Mumbai (2008) HPCL, Mumbai (2009) HPCL, Vizag (2010) **BORL, Bina (2011)** ••• HMEL, Bhatinda (2011) MRPL, Mangalore (2012) * IOCL, Digboi (2012) ••• RIL, Jamnagar (2012)

- Globally competitive.
- Low cost
- Less consumption
- No additional investment
- Applicable in conventional & fiberfilm sweetening processes
- Patents: Foreign 06 Indian 03 • Publications: 10 License Fee & Royalty

Creating Future Fuels

Development & Popularization of Improved Gur bhatti

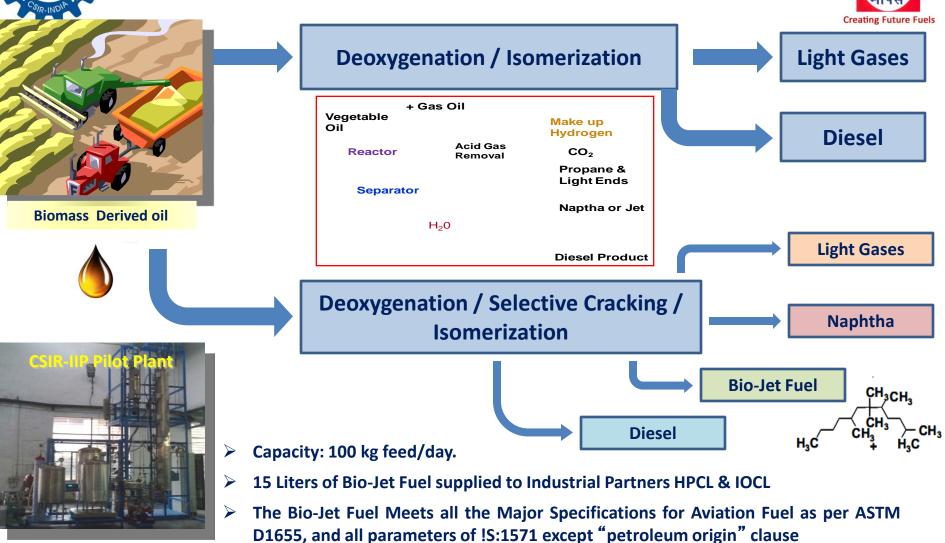
- Improved 3- & 4- Pan *Gur Bhatti* developed & installed in rural areas *(over 35 installations)*
- Nearly 23% increase in daily *Gur* production observed.
- 12% savings in fuel consumption observed.
- Reduction in emissions (Smoke) clearly observed.

Being popularized & installed under CSIR 800 mission

CSIR-IIP improved Gur bhatti installed near Meerut, U.P.

CSIR-IIP team with Gur Bhatti owner

More profit, cleaner environment, better quality of jaggery



Prominent Technologies Developed & Ready for Commercialization

Process for Bio-Jet Fuel

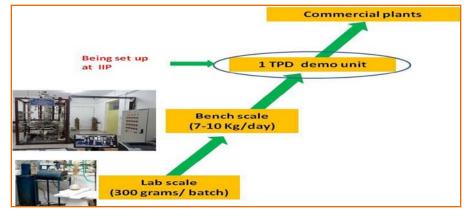
Waste Plastics to Fuel and Chemicals

Scenario in India

Waste Plastics

- ** As part of MSW in 60 major cities: ~ 15, 500 TPD (i.e ~ 56 Lakhs TPA)
- * Added everyday which lie littered (assuming 60 % recycling) : ~6137 TPD

Source CPCB



Socio-economic impact

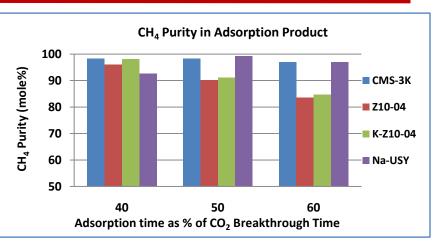
Technology Development

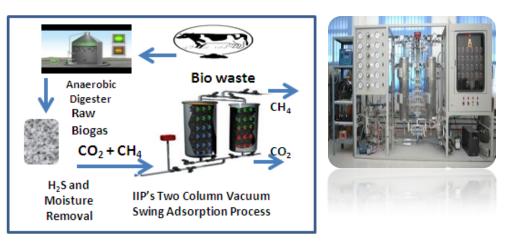
Creating Future Fuels

CSIR IIP & GAIL Technology

National Award for Technology Innovation in 2012

- Clean and economical automotive grade fuel from alternative source
- Impetus to waste plastics collection
- **Economic benefits to rag pickers**
- Green solution to waste plastics disposal

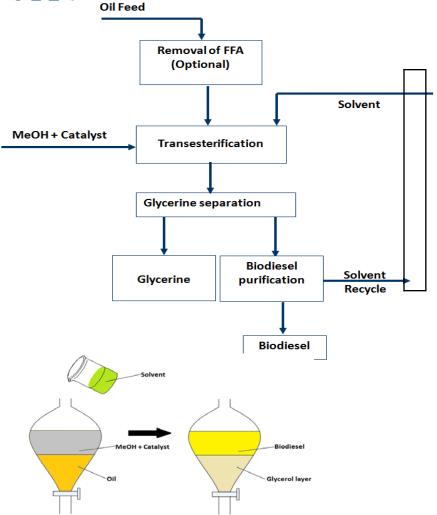

Pressure/Vacuum Swing Adsorption (PVSA) Process for Biogas Up gradation



Highlights

- Production of high purity CH₄ with purity and recovery >90 mol%
- Simpler VSA cycle based on low cost commercial adsorbent
- Low energy required, high productivity
- Product biogas suitable for
 - Combined heat and power generation
 - Transportation fuel
 - Industrial and domestic usage
- Technology suitable for rural application
- Alignment to National Missions

A Demonstration Plant Based on this Process with a Raw Biogas Throughput of 10 m³/Day is being Set-up at CSIR-IIP



AND PROF SECTION APPRICATION A

Biodiesel Production at Room Temperature

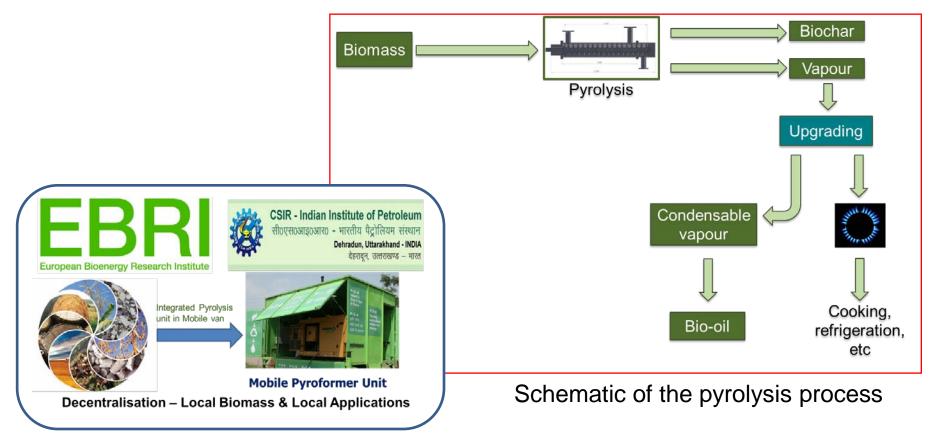
Salient Features

✓ Suitable for feed stocks (nonedible oils) having FFA up to 10%.

 ✓ Reaction at ambient conditions in without any heating or any mechanical stirring. After separation of glycerine, biodiesel is purified by water washing/distillation.

✓ Especially suitable for small scale operations in rural economies

Patent Filed: 1 Indian Patent filed


Active collaboration with Chhattisgarh Biofuel Development Authority

Mobile Pyroformer

- Pyrolysis of agriculture waste for production of bio oil for stationary applications
- Aston University, UK sponsored Joint project between EBRI & CSIR-IIP

Farmers need never burn crop residues again

Field Study to Determine Benzene Emission at Petrol Stations in India

Objectives

 To carry out a Field Study to determine Benzene Emission at Petrol Stations in India and different measures taken-up by OMCs on the same - as per directives of PMO

Field Study

 IIP carried out a field study at 126 petrol stations in 13 cities w.r.t. installation of Vapor Recovery System (VRS) Stage-II, sale of petrol, type of ownership (ROs & COCOs) & OMCs (PSU and Private), petrol sell 50-300 KL/month, Benzene Emission.

Key Findings

Different Petrol Stations

- In general, Benzene Content in forecourt of petrol stations having no VRS Stage II was in the range of 0.56 (min.) to 2.89 ppm (max).
- Lower Benzene Content (0.01 to 0.44 ppm) was found, where VRS Stage II has been installed which was below the safe limit of 1.00 ppm of NIOSH's Short-Term Exposure Limit (STEL). VRS Stage-II is useful to reduce Bz Emission.
- Current status of VRS Stage II implementation : In Delhi, out of 388 petrol stations, the Stage – II VRS has been installed at 130 petrol stations; In the rest of the country, Stage – II VRS has been installed at 188 petrol stations. IIP recommended VRS Stage –II implementation at all petrol stations in the country.

Focus on health of petrol pump attendants and motorists

Societal Impact

- Developed improved biomass stoves.
- Data on indoor air pollution by biomass *Chullhas* generated.
- Field trials & practical demonstration conducted at Champawat, Uttarakhand.
- For popularization of Chullhas, one day workshop attended at Champawat organized by UREDA.

	Conventional Chullha		Improved Chullha		
	Thermal	Total Suspended	Thermal	Total Suspended	
	Efficiency (%)	Particulates (µg/m ³)	Efficiency (%)	Particulates (µg/m ³)	
	15.12	1000	26	900	
				<text><text><text><text></text></text></text></text>	से बचाएं त जिन्द्रां के लिपा के प्रत्यां फर्म के लिपा के बेहर का भी सही के बेहर का मान के बार के बेहर का मान के बेहर का मान के बेहर का मान के बेहर का मान के बार के बेहर का मान के बार के बार के बेहर का मान के बार के का
Improved Biomass Chullha Improved		<i>chullha</i> field trials	Popularization of o	chullha	

Improved chullha field trials

Popularization of chullha

Less fuel, reduced smoke, low cost

Jigyasa Programme

Creating Future Fuels

Council of Scientific and Industrial Research (CSIR) has joined hands with Kendriya Vidyalaya Sangathan (KVS) in form of Jigyasa, a student- scientist connect programme which was launched on 06 July 2017. The aim is to extend student's classroom education with that of a very well planned research laboratory based experimental learning.

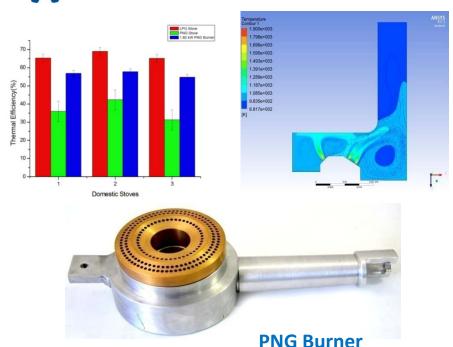
Jigyasa Activities

Oil & Gas Conservation Awareness Week, "Saksham 2018" The Oil & Gas Conservation Awareness Week, "Saksham 2018" was inaugurated on January 19, 2018. Main objective of awareness week is to bring awareness about Oil & Gas Conservation among students.

Lecture by Scientist, IIP to Students of KV school: A lecture on "Hydrocarbons: From Refinery to Day to Day Life" was delivered to students of KV school.

Tarunotsav Program for XIth Students: The "Tarunotsav" programme was organized on April 26, 2018 for students of XIth class

Student Residential Program: A three-day Summer Residential Programme in Science was organized at CSIR-I.I.P. for students of KV. during May 14-16, 2018



CSIR-IIP Road Map For New India Vision → Goals → For Future

Development of Improved PNG Burner

(Sponsored by PCRA)

- Modifying LPG burner by increasing supply gas injector holes reduces the thermal efficiency of the burner
- Interchangeability between LPG and PNG is poor as "Flame Lift" phenomena is observed
- Changing supply pressure affects the flame characteristics in self aerated burners

Project Outcome:

- Improved PNG burners of four different output capacity designed
- Prototype PNG burners fabricated and experimentally evaluated
- Overall 15% improvement in thermal efficiency observed
- > A standard facility for the evaluation of PNG burners established
- Evaluation procedure designed to help BIS to formulate Indian standard on PNG burners

PNG Burner Evaluation Facility

INDIGENOUS REFORMING CATALYST

Standian Institute of Petroleum has made efforts to make a remarkable break through in the elopment of indigenous Reforming catalysts. Extensive research carried out at IIP has resulted to the successful design of a novel catalyst creating optimum acid sites and metal sites led to the develop of the balanced Pt-Re/Al₂O₃ catalyst called IPR-2001. The catalyst exhibits improved product quality in terms of C_5 +, Octane, BTX and H_2 yields along with improved catalyst life.

Commercial Success : At CPCL and IPCL in 1990

Feedback from User Industry (CPCL)

"

The performance of catalyst is quite satisfactory with good quality product especially with respect to reformate and H₂ yields

In fact the reformate RON was achievable at 5 °C temperature lower than what it was guaranteed

The catalyst was in operation successfully for about 21 months of single

Recognition : CSIR-IIP Bagged CSIR Technology Award in 1992