COURSE CONTENTS

- 1. Single-phase shell-and tube heat exchangers
 - Overall aims of thermal design
 - Types of heat exchangers
 - Design data required
 - Fundamental correlations for thermal design
 - Optimising tubeside design
 - Optimising shellside design
 - Shell style and baffling
 - Stream analysis
 - Temperature profile distortion
 - Minimisation of pressure drop
 - Minimising shellside pressure drop
 - Minimisation of shellside pressure drop
 - Use of multiple shells in series/parallel
 - Allocation of shellside and tubeside
- 2. MTD
 - LMTD
 - Co-current flow
 - Counter-current flow
 - Temperature cross
 - 'F', 'G' and 'H' shells for temperature cross
 - Temperature profile distortion (TPD)
- 3. Thermal design of Condensers
 - The mechanisms of condensing
 - Condensate film
 - Gravity- and shear-controlled condensation
 - Condensation of mixtures
 - Classification of condensers
 - Practical guidelines for thermal design
 - Shell type and baffling
 - Multiple shells in series/parallel
 - Desuperheating
 - Subcooling
 - Special applications: low-fin tubes and reflux condensers

4. TEMA basics

- Nomenclature
- Fabrication tolerances
- General fabrication and performance information
- Installation, Operation and Maintenance
- Mech. Standards TEMA Class RCB
- Flow-induced vibration
- Thermal relations

- Physical properties of fluids
- General information
- Recommended good practice
- 5. Thermal design of Reboilers
 - Pool boiling and parameters affecting it
 - Flow boiling
 - Design of distillation column reboilers: kettle, vertical thermosyphon, horizontal thermosyphon and forced flow. Special design considerations: film boiling and very low delta-T. Selection of reboilers, start-up and control of reboilers
- 6. Fouling Causes, consequences and mitigation
 - Adverse effects of fouling
 - Categories of fouling
 - Parameters that affect fouling
 - The stages of fouling
 - How to provide a fouling allowance
 - Selection of fouling resistance
 - Design guidelines for reducing fouling

- 7. Flow-induced vibration analysis
 - Introduction
 - Mechanics of flow-induced tube vibration
 - Modes of tube failure
 - Producing a safe design
 - The vital link between flow-induced tube vibration and pressure drop
 - Acoustic vibration
- 8. Enhanced heat transfer
 - What is enhanced heat transfer?
 - The imperative for EHT
 - Benefits of EHT
 - Techniques for heat transfer enhancement
- **9.** Twisted-tube heat exchangers (TTHE's)
 - Shortcomings of the STHE
 - Features, advantages and applications of the TTHE
 - The retrofit situation
 - Comparison with conventional STHE's

10. Helixchangers

- Limitations of conventional baffle design
- Advantages of Helixchangers
- Best applications
- Comparison with conventional STHE's

11. Air-cooled heat exchangers (ACHE's)

- Pros and cons of ACHE's
- Optimising air and water cooling: selection of break temperature

- Construction features
- **12.** Heat exchanger troubleshooting, debottlenecking and revamp
- Excessive cooling water scaling
- Supplementing existing shell
- Missing longitudinal baffle
- Changing from series to parallel operation
- Replacement/modification of tube bundle tubeside
- Replacement/modification of tube bundle shellside
- Interchange of fluid sides (two case studies)
- Addition of tube inserts
- Air-cooled heat exchangers
- Increase air flow rate
- Reduce no. of tube passes to handle higher tubeside flow rate Add, supplement or replace trim cooler